Team Members

Adam Kaas Leader

Greg Fontana Simulator

Meiyong Himmtann Webmaster

Brittany Duffy Communication Leader

Alain Ndoutoume Systems Leader & Commissioner

Brandon Dixon Layout Designer

Megan Sharp Coil Designer

Advisors Dr. Mani Mina, Senior Lecturer Dr. John Pritchard, Graduate Student

Client

Iowa State University High Speed Systems Engineering Lab

Presentation Outline

Project Scope

Ę

- Design Cycle
 - Coils
 - Schematics
 - Layouts
- Test Plan
 - Electronics Test Plan
 - Optics Test Plan
- Results
- Challenges

Project Scope

Deliverables

- ▶ Fast (1µs)
- Compact (3.5" x2")
- High Strength (500 G)

Project Scope

Functions

- Generates a magnetic field with strength ≥ 500 gauss
- Able to generate a magnetic field using a 1µs pulse width

Features

- ▶ Barrel jack for \leq 15 V DC source
- SMA port for pulse generator
- SMA port for 0.050 Ω current sense resistor
- Wire to board connection allows for interchangeable coils
- Indicator LEDs for user friendly functions and protective circuitry
- Dimensions: 3.5" x 2"

Ę

Coils

Ē

- Lower inductance \rightarrow faster rise time
 - Lower inductance requires higher current to maintain field strength

Coils Continued...

- Helmholtz coils give a stronger magnetic field for similar parameters
- Single coils give lower inductance for similar parameters

	Coil A	Coil B	Coil C	Coil D	Coil E	
Frequency	Inductance (nH)					
0.5 MHz	73.81	134.01	113.41	294.91	329.01	
1 MHz	59.93	119.93	102.83	289.23	307.33	
1.5 MHz	68.62	126.22	111.02	282.22	305.42	
2 MHz	67.21	124.81	106.91	280.91	296.41	

Layout Process Version 1

- Designed in EaglePCB
- Created on ProtoMat S62

Layout to Protoype

- ProtoMat S62
- Export Layout in GERBER file
- Each file indicates a particular layer
- Copper top(GTL) and bottom layer(GBL)
- Drill size(TXT)
- Create Isolation around the line

Protomat S62

Video Here

Soldering Challenges

- Size of components
- Size of board
- Weak traces

Layout Process Version 2

- Designed in EaglePCB
- Sent to OSHPark

Ę

Reflow Soldering

- Solder Paste
- Reflow Oven
- Thermal Profile
- Check Connection

Preliminary Results

1 µs Pulse Width Demonstration

- 15 volts DC input
- 1 µs pulse width input
- 2 V amplitude peak-to-peak
- Measured pulse width of 930 ns

Technical Challenges

- Bad Cables
- "Cold Solder"
- Duty Cycle Considerations
- DC Barrel Jack layout incorrect
- Measuring magnetic field

Optics Test Plan

Sagnac Interferometer

Photo Courtesy of Dr. John W. Pritchard

Client's Experiment

Tioh, Jin-Wei, "Interferometric switches for transparent networks: development and integration" (2012). *Graduate Theses and Dissertations*. Paper 12487.

Ę

New Test Results

2.8 V Input

2.9 V Input

3.0 V Input

Theoretical Results vs Actual Discrepancy Speculation

- Magneto-optic material saturated at 225 G
- Current sense resistor voltage ≈ 750 mV
 - ► Current through coil ≈ 15 A
 - ► B ≈ 112 G
- Many factors could be responsible
 - Magnetic permeability
 - Imperfect coil
 - Sensitivity of the MO material
 - Human error
- Ongoing investigation

Conclusion

Ļ

- Achievement of requirements demonstrated to client
- Wire-to-board connector allows various coils to be used for other applications such as
 - Megawatt Q-switched laser systems
 - Research in biomagnetism
 - Small solenoid systems

Questions?

Test Results

Coil Equations

Single Coil Calculations

 $B = \frac{\mu NI}{\sqrt{l^2 + 4R^2}} = \frac{(4\pi \ x \ 10^{-7})(5)(48.41)}{\sqrt{(1 \ x \ 10^{-3})^2 + 4(3 \ x \ 10^{-3})^2}} = 0.050005 \ Teslas = 500.05 \ gauss$

$$L = \frac{\mu N^2 (\pi R^2)}{\sqrt{l^2 + 4R^2}} = \frac{(4\pi \ x \ 10^{-7})5^2 (\pi \ * \ (3 \ x \ 10^{-3})^2)}{\sqrt{(1 \ x \ 10^{-3})^2 + 4(3 \ x \ 10^{-3})^2}} = 146 nH$$

Helmholtz Coil Calculations

Note: Here are relevant variables for this section: μ : permeability of free space $(4\pi \ x \ 10^{-7})$ N: number of turn of a coil (dimensionless) R: radius of a coil (meters) l : length of a coil (meters) L : inductance of a coil (Henries) B : magnetic field of a coil (Teslas. 1 tesla=10,000 gauss)

I : current through a coil (amperes)

 $B = \frac{\mu(0.7155)NI}{R} = \frac{(4\pi \ x \ 10^{-7})(0.7155)(5)(33.37)}{(3 \ x \ 10^{-3})} = 0.050006 \ Teslas = 500.06 \ gauss$ $L = 2\mu(0.7155)N^2\pi R = 2(4\pi \ x \ 10^{-7})(0.7155)5^2(\pi(3 \ x \ 10^{-3})) = 423.7nH$

MATLAB CODE - Single Coil

yfiles ► megsharp ► Documents ► MATLAB ► EE492

📝 Edite	🖻 Editor - \\iastate.edu\cyfiles\megsharp\Documents\MATLAB\EE492\BfieldCalculationSingleShortCoil491.m					
∫ Cu	rrrentCalculationSingleShortCoil491.m 🛛 🛪 🛛 BfieldCalculationSingleShortCoil491.m 🛛 🗶 🛛 I_vs_N	J_table_Single.m × ↓ +				
1 -	clear all					
2 -	close all					
3 -	clc					
4						
5 -	<pre>N = input('How many turns are in the coil? ');</pre>	$N \rightarrow #$ of turns in the coil (dimensionless)				
6 -	<pre>l = input('What is the length of the coil (in mm)? ');</pre>	<pre>% 1 -> length (meters)</pre>				
7 -	<pre>R = input('What is the radius of the coil (in mm)? ');</pre>	<pre>% R -> radius of the coil (meters)</pre>				
8 -	<pre>I = input('What is the current of the coil? ');</pre>	<pre>% I -> current (amperes)</pre>				
9						
10 -	B_T = ((4*pi*10^-7)*N*I)/sqrt((1*0.001)^2 + 4*(R*0.001)^2);	% Equation from MFG Design paper for single coil.				
11 -	$B_g = B_T * 10^4;$	% Converting magnetic field units: from Tesla to gauss.				
12						
13 -	disp(['The magnetic field generated with those parameters for	<pre>a single short coil is ', num2str(B_g), ' Gauss.']);</pre>				
14						

:yfiles MATLAB EE492

2	🖻 Editor - \\iastate.edu\cyfiles\megsharp\Documents\MATLAB\EE492\CurrentCalculationSingleShortCoil491.m						
5	CurrentCalculationSingleShortCoil491.m \times BfieldCalculationSingleShortCoil491.m \times I_vs_N_table I I I I I I I I I I I I I I I I I I I	table_Single.m 🗶 🛨					
1	- clear all						
2	- close all						
3	- clc						
4							
5	- N = input('How many turns are in the coil? ');	$N \rightarrow #$ of turns in the coil (dimensionless)					
6	<pre>- l = input('What is the length of the coil (in mm)? ');</pre>	<pre>% l -> length (meters)</pre>					
7	- R = input('What is the radius of the coil (in mm)? ');	<pre>% R -> radius of the coil (meters)</pre>					
8	- B_g = input('What is the magnetic field (in Gauss) of the coil?	? '); % B_g -> magnetic field produced by the coil (Gauss					
9							
10	- B_T = B_g *10^-4; %	% Converting magnetic field units: from Gauss to Tesla.					
11	<pre>- I = (B_T*sqrt((l*.001)^2 + 4*(R*.001)^2))/((4*pi*10^-7)*N); %</pre>	% Equation from MFG Design paper for single coil.					
12							
13	 disp(['The current required to generate that field for a single 	e short coil is ', num2str(I), ' Amps.']);					
14							

MATLAB CODE - Single Coil Continued...

te.edu\cyfiles ▶ megsharp ▶ Documents ▶ MATLAB ▶ EE492 Editor - \\iastate.edu\cyfiles\megsharp\Documents\MATLAB\EE492\I_vs_N_table_Single.m I_vs_N_table_Single.m 🛛 🗶 CurrentCalculationSingleShortCoil491.m 🗶 BfieldCalculationSingleShortCoil491.m 🗶 +1 -1 = input('What length do you want to work with?'); 2 \$num rad = input('How many radii do you want to enter try?'); 3 %r(num rad)=0; 4 5 %for k = 1:1:num rad 6 r = input ('What radius do you want to graph (in mm)?'); 7 %end 8 9 -N = [1:1:20];I = zeros(1, 20);10 -11 -L = zeros(1, 20);12 13 %for j = 1:num rad 14 -- for i = 1:1:20 15 - $I(i) = (0.05 \times \text{sgrt}((1 \times 0.001)^2 + 4 \times (r \times 0.001)^2)) / ((4 \times \text{pi} \times 10^{-7}) \times N(i));$ 16 - $L(i) = 1000*((((4*pi*10^{-7})*(N(i))^2)*(pi*r^2))/(sqrt((1*0.001)^2+4*(r*0.001)^2));$ 17 end 18 %figure(j) 19 %grid on 20 hold on 21 -[hAx,h1,h2] = plotyy(N,I,N,L);22 \$str = sprintf('Turns vs. Current Single Short Coil: R = %fmm', r); 23 title('Single Coil 500 Gauss Parameters'); 24 xlabel('# of Turns'); %xlim([0,50]); 25 vlabel(hAx(1), 'Current (Amps)'); %vlim([0,100]); 26 ylabel(hAx(2), 'Inductance (nH)'); 27 legend([h1,h2],'Current','Inductance'); 28 %end

MATLAB CODE – Helmholtz Coil

(cyfiles ►	megsharp Documents MATLAB EE492						
📝 Edit	or - \\iastate.edu\cyfiles\megsharp\Documents\MATLAB\EE492\BfieldCal	IculationHeli	iholtzCoil491.m				
Bf	eldCalculationHelmholtzCoil491.m 🔀 CurrentCalculationHelmholtzC	oil491.m*	I_vs_N_table_Helmholtz.m 🗶 🕂				
1 -	clear all						
2 -	close all						
3							
4 -	N = input('How many turns are in the coil? ');	;	$N \rightarrow #$ of turns in the coil (dimensionless)				
5 -	<pre>R = input('What is the radius of the coil (in</pre>	mm)? ');	<pre>% R -> radius of the coil (meters)</pre>				
6 -	<pre>I = input('What is the current of the coil in</pre>	Amps? ')	<pre>% I -> current of the coil (amperes)</pre>				
8 -	$B T = (4*ni*10^{-7})*0 7155*N*T/(B*0 001)$		& Equation from MEG Design paper for a Helmholtz coil				
9 -	$B_{\alpha} = B_{T} * 10^{4}$:		% Converting magnetic field units: from Tesla to gauss.			V	
10	/						
11 -	<pre>disp(['The magnetic field generated with those</pre>	e paramet	rs for a Helmholtz coil is ', num2str(B_g), ' Gauss.']);				
12							
13	% To verify the equation used above we did a d	dimension	l analysis:				
14	ξ u*N*I						
15	* B =	cyfiles 🕨	megsharp ▶ Documents ▶ MATLAB ▶ EE492				▼ .
17	S K S IINTTS -	📝 Edite	r - \\iactate edu\cutiles\mersharn\Documents\MATLAB\EF402\CurrentCalculationHelmholtzCoil401 m				Q
18	<pre>% B -> Tesla(T) -> V-s/A*m</pre>		- (liastate.edu/cymes/megsharp/bocuments/ivik/rEAb/cE452/cumentearculation/renninoit2coii451.ini				U
19	% u -> H/m -> Wb/A*m -> V-s/A*m	Bfi	ldCalculationHelmholtzCoil491.m 🛛 CurrentCalculationHelmholtzCoil491.m 🗶 I_vs_N_table_Helmholtz	.m 🗙 🕂 🛛			
20	% N -> dimensionless	1 -	alaan all				
21	<pre>% I -> Amperes(A)</pre>	1 -	Clear all				
22	<pre>% R -> radius(m)</pre>	2 -	close all				
23	% V-s V-s/A*m * A V-s/m V-s	3					
24	§ = = =		N = immut/Iller menu turne end in the secilo like				
25	sm ² m m ²	4 -	N = input('How many turns are in the coll?'); % % N	-> # of turns in th	e coll (dimens	sioniess)	
27	% Then we found that 1 Gauss = 0.0001 Tesla	5 -	<pre>R = input('What is the radius of the coil (in mm)? ');</pre>	% R → radius o	f the coil (me	eters)	
		6 -	B g = input('What is the magnetic field (in Gauss) of the coil? '): % B	σ −≻ magnetic field	produced by t	he coil (Gau	SS)
			··· ··· ··· ··· ··· ··· ··· ···			,	,
		/					
		8 -	B_T = B_g *10^-4; & Co	nverting magnetic f	ield units: fr	com Gauss to	Tesla.
		9 -	$I = B T^{*}(R^{*0},001) / ((4^{*}pi^{*}10^{-7})^{*}N^{*0},7155);$	<pre>% Eguation from</pre>	MFG Design pa	aper for a He	lmholtz coil.
		10					
		10					
		11 -	<pre>disp(['The current required to generate that field for a Helmholtz coil</pre>	is ', num2str(I), '	Amps.']);		

MATLAB CODE – Helmholtz Coil Cont...

```
cyfiles 
MATLAB 
EE492
📝 Editor - \\iastate.edu\cyfiles\megsharp\Documents\MATLAB\EE492\I_vs_N_table_Helmholtz.m
    BfieldCalculationHelmholtzCoil491.m 🗶 CurrentCalculationHelmholtzCoil491.m 🗶 I vs N table Helmholtz.m
 1 -
         r = input ('What radius do you want to graph (in mm.)?');
  2
  3 -
         N = [1:1:20];
         I = zeros(1, 20);
  4 -
  5 -
        L = zeros(1, 20);
  6
         %for j = 1:num rad
  7
 8 -
       for i = 1:1:20
 9 -
            I(i) = (0.05*r*.001) / (N(i)*4*pi*10^{-7}*0.7155);
 10 -
            L(i) = 1000*((2*(4*pi*10^{-7}))*(0.7155)*(N(i))^{2*pi*(r*0.001)});
 11 -
           end
          %figure(j)
 12
13 -
          hold on
14 -
           [hAx,h1,h2] = plotyy(N,I,N,L);
 15
           %str = sprintf('Turns vs. Current Single Short Coil: R = %fmm', r);
 16 -
          title('Helmholtz Coil 500 Gauss Parameters');
 17 -
          xlabel('# of Turns'); %xlim([0,50]);
 18 -
          ylabel(hAx(1), 'Current (Amps)'); %ylim([0,100]);
 19 -
          ylabel(hAx(2),'Inductance (nH)');
 20 -
          legend([h1,h2],'Current','Inductance');
         %end
 21
```

MOSFET

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

	-	· · · · ·				
Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	30	V
V _{DGR}	drain-gate voltage	25 °C ≤ T_j ≤ 175 °C; R_{GS} = 20 kΩ		-	30	V
V _{GS}	gate-source voltage			-20	20	V
Ptot	total power dissipation	T _{mb} = 25 °C; <u>Fig. 1</u>		-	349	w
I _D	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; <u>Fig. 2</u>	[1]	-	100	Α
		V _{GS} = 10 V; T _{mb} = 100 °C; <u>Fig. 2</u>	[1]	-	100	Α
I _{DM}	peak drain current	pulsed; t _p ≤ 10 μ s; T _{mb} = 25 °C; <u>Fig. 3</u>		-	1888	Α
T _{stg}	storage temperature			-55	150	°C
тј	junction temperature			-55	150	°C
T _{sld(M)}	peak soldering temperature			-	260	°C
V _{ESD}	electrostatic discharge voltage	HBM		2000	-	V
Source-drain diode						
IS	source current	T _{mb} = 25 °C	[1]	-	100	Α
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; T_{mb} = 25 °C		-	1888	Α

http://www.nxp.com/documents/data_sheet/PSMN0R9-30YLD.pdf

Current Sense Resistor

Model No.	Power Dielect. Strengt		Max.	Resistance		Terminal	
moder No.	Rating	V _{RMS} AC	Voltage	Min.	Max.	reminar	
MP725 25 Watts * 1,500		200	0.020 Ω	1.00K	Solderable		

http://www.caddock.com/Online_catalog/Mrktg_Lit/MP725.pdf

Diode

Symbol	Paramete	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage		200	V	
IFRM	Repetitive peak forward current t _p = 5 µs, F = 5 kHz		110	Α	
	Ecoward rmc ourrant	DO-201AD / DO-15	70	А	
F(RMS)	Forward fins current	SMC	70		
I _{F(AV)}		DO-15 T _{lead} = 50 °C			
	Average forward current, $\delta = 0.5$	DO-201AD T _{lead} = 90 °C	3	Α	
	SMC T _c = 110 °C				
IFSM	Surge non repetitive forward current t _p = 10 ms Sinusoidal		75	Α	
Tstg	Storage temperature range	-65 to + 175	°C		
Тј	Maximum operating junction tempera	175	°C		
TL	Maximum lead temperature for soldering during 10 s at 4 mm from case		230	°C	

Table 1. Device summary			
I _{F(AV)}	3 A		
V _{RRM}	200 V		
T _j (max)	175 °C		
V _F (typ)	0.7 V		
t _{rr} (typ)	16 ns		

http://www.st.com/web/en/resource/technical/document/datasheet/CD0011033 3.pdf