Team Members

Adam Kaas

Leader

Greg Fontana Simulator

Meiyong Himmtann Webmaster

Brandon Dixon Layout Designer

Brittany Duffy Communication Leader

Alain Ndoutoume Systems Leader & Commissioner

Megan Sharp Coil Designer

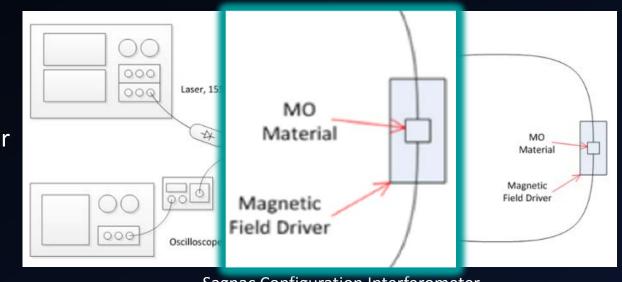
Advisors

Dr. Mani Mina, Senior Lecturer John Pritchard, Graduate Student Robert Bouda, Graduate Student

Client

Iowa State University High Speed Systems Engineering Lab

Presentation Outline


- Problem Statement
- Applications/Needs
- Functional/Non-Functional Requirements
- Basic Circuit Idea
- Design Cycle
- Detailed Design and Analysis
- Testing Approach
- Risk Assessment
- Current Project Status
- Future Project Plans

Problem Statement

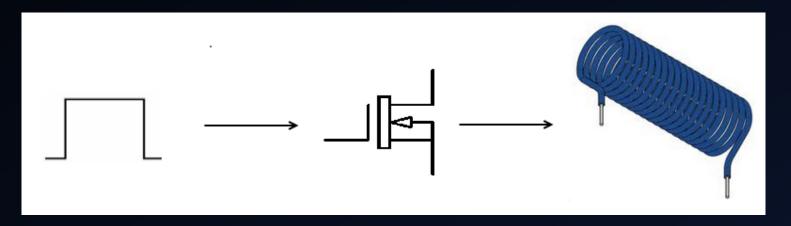
- Design a magnetic pulse generator that is:
 - Fast (1μs)
 - Compact (3.5" x2")
 - High Strength (500 G)

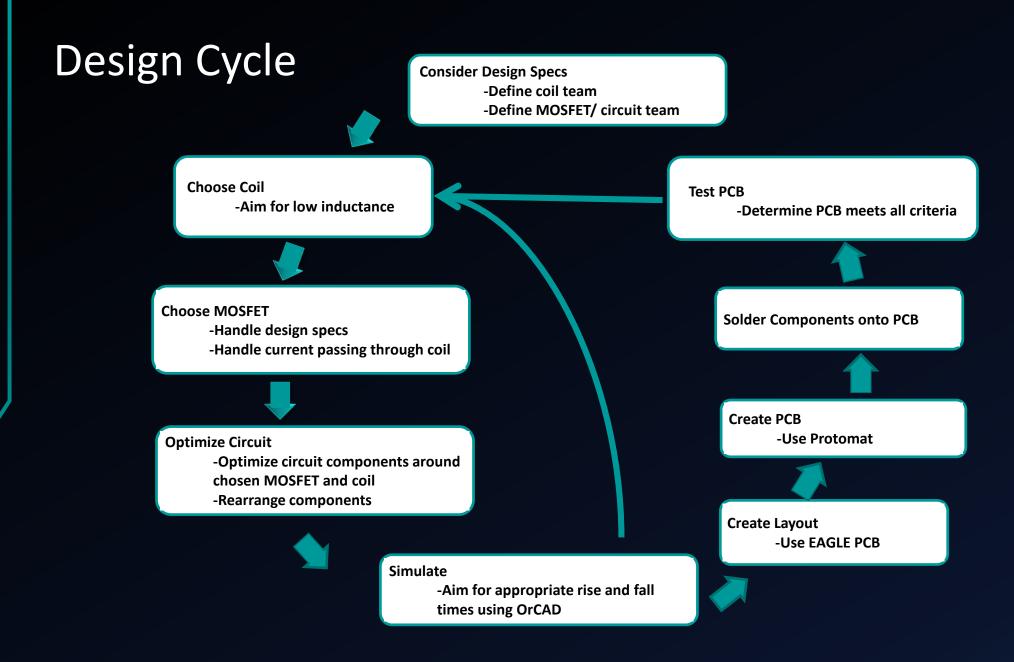
Applications/Needs

- Fast-switching needs
- Magneto-optics
 - Magneto-Optic Interferometer

Sagnac Configuration Interferometer Photo Courtesy of John W. Pritchard

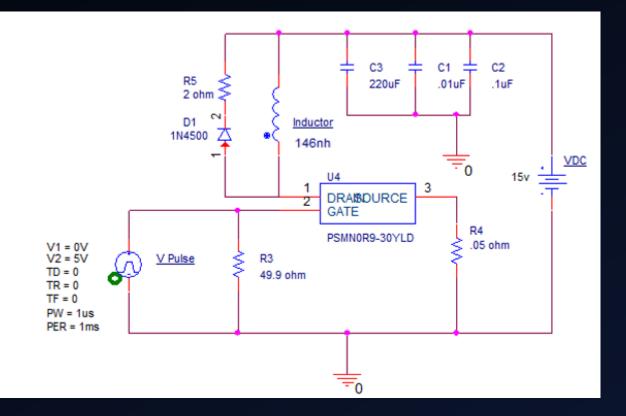
Functional Requirements

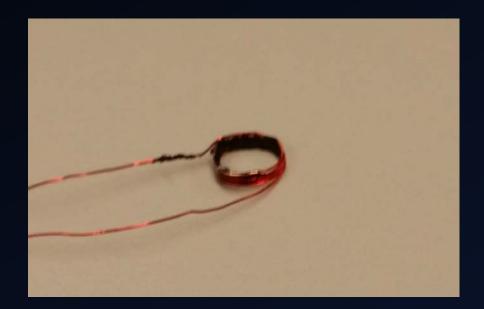

- Magnetic field with strength \geq 500 gauss
- Magnetic Field 1µs pulse
- Consistent Results


Non-functional Requirements

- Dimensions ≤ 3.5 " x 2"
- Enclosed Device
- DC voltage source \leq 15 volts

Basic Circuit Idea

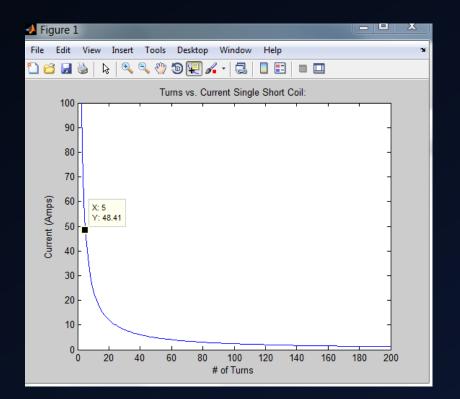

- Pulse to turn MOSFET on and off
- Coil to generate magnetic field


Detailed Design

- Coil
- MOSFET
- Resistors
- Capacitors
- Diode

Coil

- 500 gauss
- Inductance
- Resistance

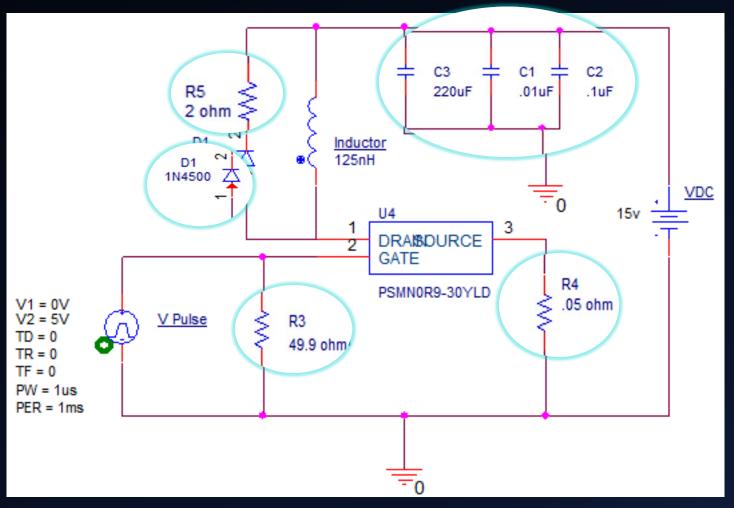


Preliminary Analysis

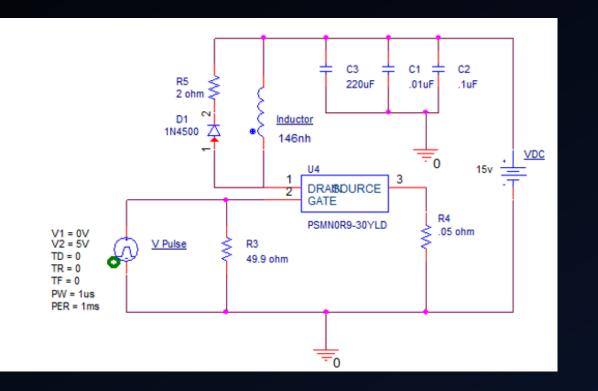
CALCULATE MAGNETIC FIELD AND INDUCTANCE

- (vs_N_table_Single.m X I_vs_N_table_Helmholtz.m X BfieldCalculationSingleShortCoil491.m X BfieldCalcu
1		<pre>%num rad = input('How many radii do you want to enter?');</pre>
2		<pre>%r init(num rad)=0;</pre>
3		
4		for k = 1:1:num rad
5		<pre>r = input('Give the radius you want to graph (in m.)');</pre>
6		<pre>%end</pre>
7		
8		<pre>l init = input('What length do you want to work with (in m)?');</pre>
9		1 = 1 init;
10		
11	_	N = [1:1:200];
12		I = zeros(1, 200);
13		
14		<pre>%hold on</pre>
15		%grid
16		
17		<pre>\$for j = 1:num rad</pre>
18	-	for i = 1:1:200
19	-	$I s(i) = (0.05 * sqrt(1^2 + 4 * (r)^2)) / ((4 * pi * 10^{-7}) * N(i));$
20	-	end
21		<pre>% figure(j)</pre>
22	-	plot(N,I_s)
23	-	<pre>str = sprintf('Turns vs. Current Single Short Coil:');% R = %fmm, r(j));</pre>
24	-	<pre>title(str);</pre>
25	-	<pre>xlabel('# of Turns'); xlim([0,200]);</pre>
26	-	<pre>ylabel('Current (Amps)'); ylim([0,100]);</pre>
27		%end
28		<pre>\$xlabel('# of Turns'); xlim([0,200]);</pre>
29		<pre>\$ylabel('Current (Amps)'); ylim([0,100]);</pre>

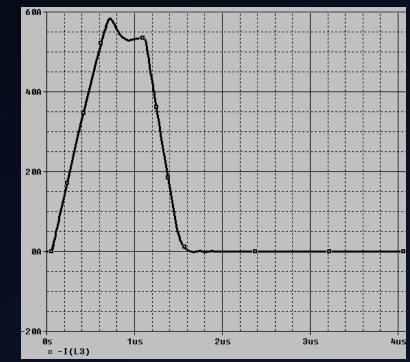
TURNS VS CURRENT FOR 500 GAUSS


MOSFET

- "High Speed"
- Continuous Drain Current (100A)
- Large Max Drain-Source Voltage (50V)
- Low Parasitic Inductance and Resistance

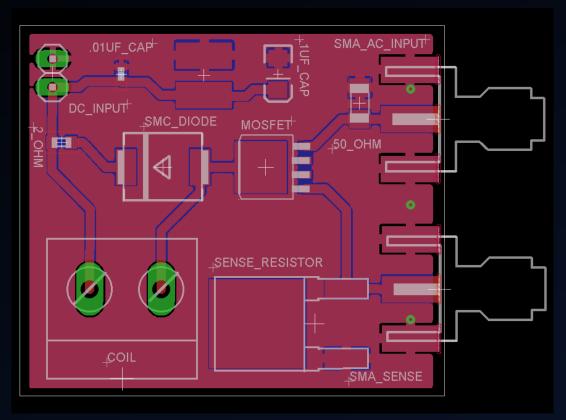

Resistors, Capacitors, and Diode

- Three Resistors
 49.9Ω, 2Ω, 0.05Ω
- Three Capacitors
 0.01uF, 0.1uF, 220uF
- One Diode
 - 200 V reverse breakdown



Simulations

SCHEMATIC



SIMULATIONS

Eagle PCB/Protomat S62

LAYOUT

FABRICATE BOARD

1.49 x 1.30 inches

Testing Approach

- 0.05Ω Current Sense Resistor
- Magnetic Field Calculations
 - Current
 - Number of Turns
 - Radius of Coil
 - Length of Coil

Risk Assessment

- Ordering enough parts early enough to compensate for additional prototyping
- Physical Dangers:
 - Risk of shock
 - Risk of burning
- Mitigation of risk:
 - Following lab safety instructions

Current Project Status

- Major Milestones:
 - Working Proof of Concept due 12/19/14
 - Parts received 12/3/14
 - Website developed and up-to-date
- Second Semester Short-Term Goals:
 - New parts selected by February 3rd

Plan for Next Semester

- Circuit testing
- Helmholtz coil
- Professionally fabricated PCB
- Device enclosure

Questions?

Project Milestones & Schedule

- Assessment of proposed solution: Big progress and better comprehension of what we are doing: (adding capacitors, sensing resistor, SMA connectors to our circuit and etc...)
- Project Plan and Design Document due by end of first semester
- Proof of Concept by 12/19/14
- 4/17/15, final paper complete and deliver final product

Resource/Cost Estimate- Prototype Hardware and Software

Item	Where to Obtain	Quantity	Cost Per	Total Cost
<u>QrCAD</u> Software	http://www.orcad.com	1	\$-	\$-
EAGLE PCB Software	http://www.cadsoftusa.com	1	\$-	\$-
MATLAB	http://www.mathworks.com	1	\$-	\$-
MOSFET	digikey.com	10	\$1.79	\$17.86
0.1uF Capacitor (Tantalum)	digikey.com	10	\$0.33	\$3.29
220uF Capacitor (Tantalum)	digikey.com	4	\$10.88	\$43.52
0.01uF Capacitor (Ceramic)	digikey.com	10	\$0.01	\$0.12
Diode	digikey.com	10	\$0.72	\$7.22
49.9 Ohm Surface Mount Resistor	digikey.com	10	\$0.10	\$1.00
0.05 Current Sense Resistor	digikey.com	2	\$9.13	\$18.26
Wire-to-Board Connector (30A/300V Rating)	digikey.com	2	\$1.04	\$2.08
Coaxial Connector	digikey.com	4	\$4.84	\$19.36
Coil wire (3m)	Iowa State High Speed Systems Lab	1	\$-	\$-
Coil glue	Iowa State High Speed Systems Lab	1	\$-	\$-
Insta-set (fast dry glue)	Iowa State High Speed Systems Lab	1	\$-	\$-
Tweezers	Megan Sharp	1	\$-	\$-
Exacto knife	Megan Sharp	1	\$-	\$-
Ruler	Iowa State High Speed Systems Lab	1	\$-	\$-
Balsa Wood	Iowa State High Speed Systems Lab	1	\$-	\$-
Charcoal (used for winding)	Iowa State High Speed Systems Lab	1	\$-	\$-
Sandpaper (for coil)	Iowa State High Speed Systems Lab	1	\$-	\$-
Soldering Station	Iowa State Parts Shop	1	\$-	\$-
Solder	Iowa State Parts Shop	1	\$-	\$-
PCB Fabrication	Iowa State Parts Shop	3	S	\$-
Total				\$112.71

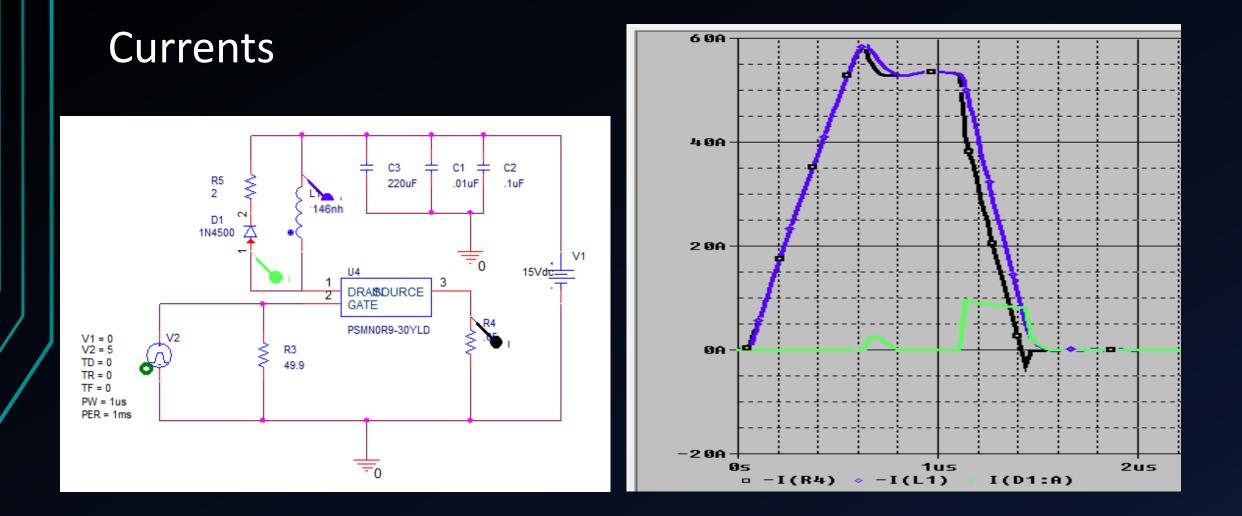
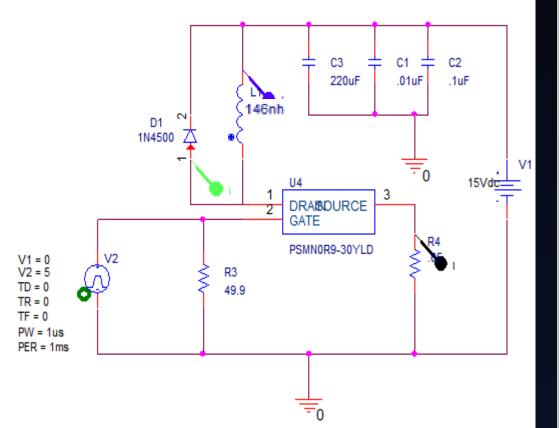

Resource/Cost Estimate – Final Product

Table 3: Final Product Costs								
Item	Description	Quantity	Cost Per	Total Cost				
N-channel MOSFET	<u>digikey.com</u>	1	\$1.79	\$1.79				
Single Coil (Resistance Wire)	Iowa State High Speed Systems Lab	1	Ş-	Ş-				
0.1uF Capacitor (Tantalum)	digikey.com	1	\$0.33	\$0.33				
220uF Capacitor (Tantalum)	digikey.com	1	\$10.88	\$10.88				
0.01uF Capacitor (Ceramic)	digikey.com	1	\$0.01	\$0.01				
Diode	digikey.com	1	\$0.72	\$0.72				
49.9ΩSurface Mount Resistor	digikey.com	1	\$0.10	\$0.10				
0.05 Current Sense Resistor	digikey.com	1	\$9.13	\$9.13				
Wire-to-Board Connector								
(30A/300V Rating)	digikey.com	1	\$1.04	\$1.04				
Coaxial Connector	<u>digikey.com</u>	2	\$4.84	\$9.68				
PCB Fabrication	oshpark.com	1	\$10.00	\$10.00				
Total \$43.6								


Equations

•
$$\frac{Current*Pulse Width}{Voltage} = Capacitance$$

•
$$\frac{48.41 \frac{Coulomb}{second}*1*10^{-6}seconds}{15 Volts} = 3.227 \ uF$$

•
$$L = \frac{\mu N^2 (\pi R^2)}{\sqrt{l^2 + 4R^2}} = \frac{(4\pi \ x \ 10^{-7})5^2 (\pi * (3 \ x \ 10^{-3})^2)}{\sqrt{(1 \ x \ 10^{-3})^2 + 4(3 \ x \ 10^{-3})^2}} = 146nH$$

•
$$B = \frac{\mu NI}{\sqrt{l^2 + 4R^2}} = 0.057865 \ Teslas = 578.65 \ gauss$$

```
15
       % To verify the equation used above we did a dimensional analysis:
16
              u*N*I
       읗
17
       % B = -----
18
                R
       8
19
       % UNITS:
20
      % B -> Tesla(T) -> V-s/A*m
21
       % u -> H/m -> Wb/A*m -> V-s/A*m
22
       % N -> dimensionless
23
      % I -> Amperes(A)
24
      % R -> radius(m)
25
       % V-s V-s/A*m * A V-s/m V-s
26
       % ---- = ----- = ----- = ----
27
       % m^2
                   m
                                     m^2
                               m
28
29
       % Then we found that 1 Gauss = 0.0001 Tesla
30
```


Without 2Ω Resistor

MOSFET Datasheet

Table 1. Quid	ck reference data							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	-	30	V	
ID	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; <u>Fig. 2</u>	[1]	-	-	100	Α	
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 1</u>		-	-	349	w	
Тј	junction temperature			-55	-	150	°C	
Static characteristics								
R _{DSon}	drain-source on-state resistance	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; Fig. 10		-	0.79	1.09	mΩ	
		V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; Fig. 10		•	0.65	0.87	mΩ	
Dynamic chara	cteristics							
Q _{GD}	gate-drain charge	V _{GS} = 4.5 V; I _D = 25 A; V _{DS} = 15 V; Fig. 12; Fig. 13		-	13.5	-	nC	
Q _{G(tot)}	total gate charge	V _{GS} = 4.5 V; I _D = 25 A; V _{DS} = 15 V; Fig. 12; Fig. 13		-	51	-	nC	
Source-drain d	liode			-				
S	softness factor	$I_{S} = 25 \text{ A}; V_{GS} = 0 \text{ V}; \text{ dI}_{S}/\text{dt} = -100 \text{ A}/\mu\text{s}; \\ V_{DS} = 15 \text{ V}; \frac{\text{Fig. 16}}{10}$		-	0.9	-		
	[1] Continuous c	urrent is limited by package.						